sections
451 rows sorted by references
This data as json, CSV (advanced)
Suggested facets: page, breadcrumbs (array)
id | page | ref | title | content | breadcrumbs | references ▼ |
---|---|---|---|---|---|---|
metadata:id1 | metadata | id1 | Metadata | Data loves metadata. Any time you run Datasette you can optionally include a JSON file with metadata about your databases and tables. Datasette will then display that information in the web UI. Run Datasette like this: datasette database1.db database2.db --metadata metadata.json Your metadata.json file can look something like this: { "title": "Custom title for your index page", "description": "Some description text can go here", "license": "ODbL", "license_url": "https://opendatacommons.org/licenses/odbl/", "source": "Original Data Source", "source_url": "http://example.com/" } You can optionally use YAML instead of JSON, see Using YAML for metadata . The above metadata will be displayed on the index page of your Datasette-powered site. The source and license information will also be included in the footer of every page served by Datasette. Any special HTML characters in description will be escaped. If you want to include HTML in your description, you can use a description_html property instead. | [] | [] |
metadata:per-database-and-per-table-metadata | metadata | per-database-and-per-table-metadata | Per-database and per-table metadata | Metadata at the top level of the JSON will be shown on the index page and in the footer on every page of the site. The license and source is expected to apply to all of your data. You can also provide metadata at the per-database or per-table level, like this: { "databases": { "database1": { "source": "Alternative source", "source_url": "http://example.com/", "tables": { "example_table": { "description_html": "Custom <em>table</em> description", "license": "CC BY 3.0 US", "license_url": "https://creativecommons.org/licenses/by/3.0/us/" } } } } } Each of the top-level metadata fields can be used at the database and table level. | ["Metadata"] | [] |
metadata:metadata-source-license-about | metadata | metadata-source-license-about | Source, license and about | The three visible metadata fields you can apply to everything, specific databases or specific tables are source, license and about. All three are optional. source and source_url should be used to indicate where the underlying data came from. license and license_url should be used to indicate the license under which the data can be used. about and about_url can be used to link to further information about the project - an accompanying blog entry for example. For each of these you can provide just the *_url field and Datasette will treat that as the default link label text and display the URL directly on the page. | ["Metadata"] | [] |
metadata:metadata-default-sort | metadata | metadata-default-sort | Setting a default sort order | By default Datasette tables are sorted by primary key. You can over-ride this default for a specific table using the "sort" or "sort_desc" metadata properties: { "databases": { "mydatabase": { "tables": { "example_table": { "sort": "created" } } } } } Or use "sort_desc" to sort in descending order: { "databases": { "mydatabase": { "tables": { "example_table": { "sort_desc": "created" } } } } } | ["Metadata"] | [] |
metadata:metadata-page-size | metadata | metadata-page-size | Setting a custom page size | Datasette defaults to displaing 100 rows per page, for both tables and views. You can change this default page size on a per-table or per-view basis using the "size" key in metadata.json : { "databases": { "mydatabase": { "tables": { "example_table": { "size": 10 } } } } } This size can still be over-ridden by passing e.g. ?_size=50 in the query string. | ["Metadata"] | [] |
metadata:metadata-sortable-columns | metadata | metadata-sortable-columns | Setting which columns can be used for sorting | Datasette allows any column to be used for sorting by default. If you need to control which columns are available for sorting you can do so using the optional sortable_columns key: { "databases": { "database1": { "tables": { "example_table": { "sortable_columns": [ "height", "weight" ] } } } } } This will restrict sorting of example_table to just the height and weight columns. You can also disable sorting entirely by setting "sortable_columns": [] You can use sortable_columns to enable specific sort orders for a view called name_of_view in the database my_database like so: { "databases": { "my_database": { "tables": { "name_of_view": { "sortable_columns": [ "clicks", "impressions" ] } } } } } | ["Metadata"] | [] |
metadata:label-columns | metadata | label-columns | Specifying the label column for a table | Datasette's HTML interface attempts to display foreign key references as labelled hyperlinks. By default, it looks for referenced tables that only have two columns: a primary key column and one other. It assumes that the second column should be used as the link label. If your table has more than two columns you can specify which column should be used for the link label with the label_column property: { "databases": { "database1": { "tables": { "example_table": { "label_column": "title" } } } } } | ["Metadata"] | [] |
metadata:metadata-hiding-tables | metadata | metadata-hiding-tables | Hiding tables | You can hide tables from the database listing view (in the same way that FTS and SpatiaLite tables are automatically hidden) using "hidden": true : { "databases": { "database1": { "tables": { "example_table": { "hidden": true } } } } } | ["Metadata"] | [] |
metadata:metadata-yaml | metadata | metadata-yaml | Using YAML for metadata | Datasette accepts YAML as an alternative to JSON for your metadata configuration file. YAML is particularly useful for including multiline HTML and SQL strings. Here's an example of a metadata.yml file, re-using an example from Canned queries . title: Demonstrating Metadata from YAML description_html: |- <p>This description includes a long HTML string</p> <ul> <li>YAML is better for embedding HTML strings than JSON!</li> </ul> license: ODbL license_url: https://opendatacommons.org/licenses/odbl/ databases: fixtures: tables: no_primary_key: hidden: true queries: neighborhood_search: sql: |- select neighborhood, facet_cities.name, state from facetable join facet_cities on facetable.city_id = facet_cities.id where neighborhood like '%' || :text || '%' order by neighborhood; title: Search neighborhoods description_html: |- <p>This demonstrates <em>basic</em> LIKE search The metadata.yml file is passed to Datasette using the same --metadata option: datasette fixtures.db --metadata metadata.yml | ["Metadata"] | [] |
custom_templates:customization | custom_templates | customization | Custom pages and templates | Datasette provides a number of ways of customizing the way data is displayed. | [] | [] |
custom_templates:css-classes-on-the-body | custom_templates | css-classes-on-the-body | CSS classes on the <body> | Every default template includes CSS classes in the body designed to support custom styling. The index template (the top level page at / ) gets this: <body class="index"> The database template ( /dbname ) gets this: <body class="db db-dbname"> The custom SQL template ( /dbname?sql=... ) gets this: <body class="query db-dbname"> A canned query template ( /dbname/queryname ) gets this: <body class="query db-dbname query-queryname"> The table template ( /dbname/tablename ) gets: <body class="table db-dbname table-tablename"> The row template ( /dbname/tablename/rowid ) gets: <body class="row db-dbname table-tablename"> The db-x and table-x classes use the database or table names themselves if they are valid CSS identifiers. If they aren't, we strip any invalid characters out and append a 6 character md5 digest of the original name, in order to ensure that multiple tables which resolve to the same stripped character version still have different CSS classes. Some examples: "simple" => "simple" "MixedCase" => "MixedCase" "-no-leading-hyphens" => "no-leading-hyphens-65bea6" "_no-leading-underscores" => "no-leading-underscores-b921bc" "no spaces" => "no-spaces-7088d7" "-" => "336d5e" "no $ characters" => "no--characters-59e024" <td> and <th> elements also get custom CSS classes reflecting the database column they are representing, for example: <table> <thead> <tr> <th class="col-id" scope="col">id</th> <th class="col-name" scope="col">name</th> </tr> </thead> <tbody> <tr> <td class="col-id"><a href="...">1</a></td> … | ["Custom pages and templates", "Custom CSS and JavaScript"] | [] |
custom_templates:customization-static-files | custom_templates | customization-static-files | Serving static files | Datasette can serve static files for you, using the --static option. Consider the following directory structure: metadata.json static-files/styles.css static-files/app.js You can start Datasette using --static assets:static-files/ to serve those files from the /assets/ mount point: $ datasette -m metadata.json --static assets:static-files/ --memory The following URLs will now serve the content from those CSS and JS files: http://localhost:8001/assets/styles.css http://localhost:8001/assets/app.js You can reference those files from metadata.json like so: { "extra_css_urls": [ "/assets/styles.css" ], "extra_js_urls": [ "/assets/app.js" ] } | ["Custom pages and templates", "Custom CSS and JavaScript"] | [] |
custom_templates:publishing-static-assets | custom_templates | publishing-static-assets | Publishing static assets | The datasette publish command can be used to publish your static assets, using the same syntax as above: $ datasette publish cloudrun mydb.db --static assets:static-files/ This will upload the contents of the static-files/ directory as part of the deployment, and configure Datasette to correctly serve the assets from /assets/ . | ["Custom pages and templates", "Custom CSS and JavaScript"] | [] |
custom_templates:id1 | custom_templates | id1 | Custom pages | You can add templated pages to your Datasette instance by creating HTML files in a pages directory within your templates directory. For example, to add a custom page that is served at http://localhost/about you would create a file in templates/pages/about.html , then start Datasette like this: $ datasette mydb.db --template-dir=templates/ You can nest directories within pages to create a nested structure. To create a http://localhost:8001/about/map page you would create templates/pages/about/map.html . | ["Custom pages and templates"] | [] |
custom_templates:custom-pages-headers | custom_templates | custom-pages-headers | Custom headers and status codes | Custom pages default to being served with a content-type of text/html; charset=utf-8 and a 200 status code. You can change these by calling a custom function from within your template. For example, to serve a custom page with a 418 I'm a teapot HTTP status code, create a file in pages/teapot.html containing the following: {{ custom_status(418) }} <html> <head><title>Teapot</title></head> <body> I'm a teapot </body> </html> To serve a custom HTTP header, add a custom_header(name, value) function call. For example: {{ custom_status(418) }} {{ custom_header("x-teapot", "I am") }} <html> <head><title>Teapot</title></head> <body> I'm a teapot </body> </html> You can verify this is working using curl like this: $ curl -I 'http://127.0.0.1:8001/teapot' HTTP/1.1 418 date: Sun, 26 Apr 2020 18:38:30 GMT server: uvicorn x-teapot: I am content-type: text/html; charset=utf-8 | ["Custom pages and templates", "Custom pages"] | [] |
custom_templates:custom-pages-404 | custom_templates | custom-pages-404 | Returning 404s | To indicate that content could not be found and display the default 404 page you can use the raise_404(message) function: {% if not rows %} {{ raise_404("Content not found") }} {% endif %} If you call raise_404() the other content in your template will be ignored. | ["Custom pages and templates", "Custom pages"] | [] |
custom_templates:custom-pages-redirects | custom_templates | custom-pages-redirects | Custom redirects | You can use the custom_redirect(location) function to redirect users to another page, for example in a file called pages/datasette.html : {{ custom_redirect("https://github.com/simonw/datasette") }} Now requests to http://localhost:8001/datasette will result in a redirect. These redirects are served with a 302 Found status code by default. You can send a 301 Moved Permanently code by passing 301 as the second argument to the function: {{ custom_redirect("https://github.com/simonw/datasette", 301) }} | ["Custom pages and templates", "Custom pages"] | [] |
changelog:id1 | changelog | id1 | Changelog | [] | [] | |
changelog:id6 | changelog | id6 | 0.60 (2022-01-13) | ["Changelog"] | [] | |
changelog:id28 | changelog | id28 | 0.51.1 (2020-10-31) | Improvements to the new Binary data documentation page. | ["Changelog"] | [] |
changelog:id29 | changelog | id29 | 0.51 (2020-10-31) | A new visual design, plugin hooks for adding navigation options, better handling of binary data, URL building utility methods and better support for running Datasette behind a proxy. | ["Changelog"] | [] |
changelog:signed-values-and-secrets | changelog | signed-values-and-secrets | Signed values and secrets | Both flash messages and user authentication needed a way to sign values and set signed cookies. Two new methods are now available for plugins to take advantage of this mechanism: .sign(value, namespace="default") and .unsign(value, namespace="default") . Datasette will generate a secret automatically when it starts up, but to avoid resetting the secret (and hence invalidating any cookies) every time the server restarts you should set your own secret. You can pass a secret to Datasette using the new --secret option or with a DATASETTE_SECRET environment variable. See Configuring the secret for more details. You can also set a secret when you deploy Datasette using datasette publish or datasette package - see Using secrets with datasette publish . Plugins can now sign values and verify their signatures using the datasette.sign() and datasette.unsign() methods. | ["Changelog", "0.44 (2020-06-11)"] | [] |
changelog:cookie-methods | changelog | cookie-methods | Cookie methods | Plugins can now use the new response.set_cookie() method to set cookies. A new request.cookies method on the :ref:internals_request` can be used to read incoming cookies. | ["Changelog", "0.44 (2020-06-11)"] | [] |
changelog:id67 | changelog | id67 | 0.29 (2019-07-07) | ASGI, new plugin hooks, facet by date and much, much more... | ["Changelog"] | [] |
changelog:v0-29-medium-changes | changelog | v0-29-medium-changes | Easier custom templates for table rows | If you want to customize the display of individual table rows, you can do so using a _table.html template include that looks something like this: {% for row in display_rows %} <div> <h2>{{ row["title"] }}</h2> <p>{{ row["description"] }}<lp> <p>Category: {{ row.display("category_id") }}</p> </div> {% endfor %} This is a backwards incompatible change . If you previously had a custom template called _rows_and_columns.html you need to rename it to _table.html . See Custom templates for full details. | ["Changelog", "0.29 (2019-07-07)"] | [] |
changelog:id70 | changelog | id70 | 0.27.1 (2019-05-09) | Tiny bugfix release: don't install tests/ in the wrong place. Thanks, Veit Heller. | ["Changelog"] | [] |
changelog:id74 | changelog | id74 | 0.25.2 (2018-12-16) | datasette publish heroku now uses the python-3.6.7 runtime Added documentation on how to build the documentation Added documentation covering our release process Upgraded to pytest 4.0.2 | ["Changelog"] | [] |
changelog:foreign-key-expansions | changelog | foreign-key-expansions | Foreign key expansions | When Datasette detects a foreign key reference it attempts to resolve a label for that reference (automatically or using the Specifying the label column for a table metadata option) so it can display a link to the associated row. This expansion is now also available for JSON and CSV representations of the table, using the new _labels=on query string option. See Expanding foreign key references for more details. | ["Changelog", "0.23 (2018-06-18)"] | [] |
changelog:id137 | changelog | id137 | 0.17 (2018-04-13) | Release 0.17 to fix issues with PyPI | ["Changelog"] | [] |
changelog:id191 | changelog | id191 | 0.11 (2017-11-14) | Added datasette publish now --force option. This calls now with --force - useful as it means you get a fresh copy of datasette even if Now has already cached that docker layer. Enable --cors by default when running in a container. | ["Changelog"] | [] |
changelog:id194 | changelog | id194 | 0.9 (2017-11-13) | Added --sql_time_limit_ms and --extra-options . The serve command now accepts --sql_time_limit_ms for customizing the SQL time limit. The publish and package commands now accept --extra-options which can be used to specify additional options to be passed to the datasite serve command when it executes inside the resulting Docker containers. | ["Changelog"] | [] |
index:contents | index | contents | Contents | Getting started Play with a live demo Follow a tutorial Try Datasette without installing anything using Glitch Using Datasette on your own computer datasette --get Installation Basic installation Datasette Desktop for Mac Using Homebrew Using pip Advanced installation options Using pipx Using Docker The Datasette Ecosystem sqlite-utils Dogsheep Pages and API endpoints Top-level index Database Table Row Publishing data datasette publish Publishing to Google Cloud Run Publishing to Heroku Publishing to Vercel Publishing to Fly Custom metadata and plugins datasette package Deploying Datasette Deployment fundamentals Running Datasette using systemd Deploying using buildpacks Running Datasette behind a proxy Nginx proxy configuration Apache proxy configuration JSON API Different shapes Pagination Special JSON arguments Table arguments Column filter arguments Special table arguments Expanding foreign key references Discovering the JSON for a page Running SQL queries Named parameters Views Canned queries Canned query parameters Additional canned query options Writable canned queries Magic parameters JSON API for writable canned queries Pagination Cross-database queries Authentication and permissions Actors Using the "root" actor Permissions Defining permissions with "allow" blocks The /-/allow-debug tool Configuring permissions in metadata.json Controlling access to an instance Controlling access to specific databases Controlling access to specific tables and views Controlling access to specific canned queries Controlling the ability to execute arbitrary SQL Checking permissions in plugins actor_matches_allow() The permissions debug tool The ds_actor cookie Including an expiry time The /-/logout page Built-in permissions view-instance view-database view-database-download view-table view-query execute-sql permissions-debug debug-menu Performance and caching Immutable mode Using "datasette inspect" HTTP caching datasette-hashed-urls CSV export URL parameters Streaming all records Binary data Linking to binary downloads Bi… | ["Datasette"] | [] |
facets:id1 | facets | id1 | Facets | Datasette facets can be used to add a faceted browse interface to any database table. With facets, tables are displayed along with a summary showing the most common values in specified columns. These values can be selected to further filter the table. Facets can be specified in two ways: using query string parameters, or in metadata.json configuration for the table. | [] | [] |
facets:facets-in-query-strings | facets | facets-in-query-strings | Facets in query strings | To turn on faceting for specific columns on a Datasette table view, add one or more _facet=COLUMN parameters to the URL. For example, if you want to turn on facets for the city_id and state columns, construct a URL that looks like this: /dbname/tablename?_facet=state&_facet=city_id This works for both the HTML interface and the .json view. When enabled, facets will cause a facet_results block to be added to the JSON output, looking something like this: { "state": { "name": "state", "results": [ { "value": "CA", "label": "CA", "count": 10, "toggle_url": "http://...?_facet=city_id&_facet=state&state=CA", "selected": false }, { "value": "MI", "label": "MI", "count": 4, "toggle_url": "http://...?_facet=city_id&_facet=state&state=MI", "selected": false }, { "value": "MC", "label": "MC", "count": 1, "toggle_url": "http://...?_facet=city_id&_facet=state&state=MC", "selected": false } ], "truncated": false } "city_id": { "name": "city_id", "results": [ { "value": 1, "label": "San Francisco", "count": 6, "toggle_url": "http://...?_facet=city_id&_facet=state&city_id=1", "selected": false }, { "value": 2, "label": "Los Angeles", "count": 4, "toggle_url": "http://...?_facet=city_id&_facet=state&city_id=2", "selected": false }, { "value": 3, "label": "Detroit", "count": 4, "toggle_url": "http://...?_facet=city_id&_facet=state&city_id=3", "selected": false }, { "value": 4, "label": "Memnonia", "count": 1, "toggle_url": "http://...?_facet=city_id&_facet=state&city_id=4", "selected": false } ], "truncated": false } } If Datasette detect… | ["Facets"] | [] |
facets:facets-metadata | facets | facets-metadata | Facets in metadata.json | You can turn facets on by default for specific tables by adding them to a "facets" key in a Datasette Metadata file. Here's an example that turns on faceting by default for the qLegalStatus column in the Street_Tree_List table in the sf-trees database: { "databases": { "sf-trees": { "tables": { "Street_Tree_List": { "facets": ["qLegalStatus"] } } } } } Facets defined in this way will always be shown in the interface and returned in the API, regardless of the _facet arguments passed to the view. You can specify array or date facets in metadata using JSON objects with a single key of array or date and a value specifying the column, like this: { "facets": [ {"array": "tags"}, {"date": "created"} ] } | ["Facets"] | [] |
facets:suggested-facets | facets | suggested-facets | Suggested facets | Datasette's table UI will suggest facets for the user to apply, based on the following criteria: For the currently filtered data are there any columns which, if applied as a facet... Will return 30 or less unique options Will return more than one unique option Will return less unique options than the total number of filtered rows And the query used to evaluate this criteria can be completed in under 50ms That last point is particularly important: Datasette runs a query for every column that is displayed on a page, which could get expensive - so to avoid slow load times it sets a time limit of just 50ms for each of those queries. This means suggested facets are unlikely to appear for tables with millions of records in them. | ["Facets"] | [] |
plugin_hooks:plugin-hook-register-magic-parameters | plugin_hooks | plugin-hook-register-magic-parameters | register_magic_parameters(datasette) | datasette - Datasette class You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name) . Magic parameters can be used to add automatic parameters to canned queries . This plugin hook allows additional magic parameters to be defined by plugins. Magic parameters all take this format: _prefix_rest_of_parameter . The prefix indicates which magic parameter function should be called - the rest of the parameter is passed as an argument to that function. To register a new function, return it as a tuple of (string prefix, function) from this hook. The function you register should take two arguments: key and request , where key is the rest_of_parameter portion of the parameter and request is the current Request object . This example registers two new magic parameters: :_request_http_version returning the HTTP version of the current request, and :_uuid_new which returns a new UUID: from uuid import uuid4 def uuid(key, request): if key == "new": return str(uuid4()) else: raise KeyError def request(key, request): if key == "http_version": return request.scope["http_version"] else: raise KeyError @hookimpl def register_magic_parameters(datasette): return [ ("request", request), ("uuid", uuid), ] | ["Plugin hooks"] | [] |
plugin_hooks:plugin-hook-forbidden | plugin_hooks | plugin-hook-forbidden | forbidden(datasette, request, message) | datasette - Datasette class You can use this to access plugin configuration options via datasette.plugin_config(your_plugin_name) , or to execute SQL queries. request - object The current HTTP Request object . message - string A message hinting at why the request was forbidden. Plugins can use this to customize how Datasette responds when a 403 Forbidden error occurs - usually because a page failed a permission check, see Permissions . If a plugin hook wishes to react to the error, it should return a Response object . This example returns a redirect to a /-/login page: from datasette import hookimpl from urllib.parse import urlencode @hookimpl def forbidden(request, message): return Response.redirect( "/-/login?=" + urlencode({"message": message}) ) The function can alternatively return an awaitable function if it needs to make any asynchronous method calls. This example renders a template: from datasette import hookimpl from datasette.utils.asgi import Response @hookimpl def forbidden(datasette): async def inner(): return Response.html( await datasette.render_template( "forbidden.html" ) ) return inner | ["Plugin hooks"] | [] |
settings:id1 | settings | id1 | Settings | [] | [] | |
settings:using-setting | settings | using-setting | Using --setting | Datasette supports a number of settings. These can be set using the --setting name value option to datasette serve . You can set multiple settings at once like this: datasette mydatabase.db \ --setting default_page_size 50 \ --setting sql_time_limit_ms 3500 \ --setting max_returned_rows 2000 | ["Settings"] | [] |
settings:config-dir | settings | config-dir | Configuration directory mode | Normally you configure Datasette using command-line options. For a Datasette instance with custom templates, custom plugins, a static directory and several databases this can get quite verbose: $ datasette one.db two.db \ --metadata=metadata.json \ --template-dir=templates/ \ --plugins-dir=plugins \ --static css:css As an alternative to this, you can run Datasette in configuration directory mode. Create a directory with the following structure: # In a directory called my-app: my-app/one.db my-app/two.db my-app/metadata.json my-app/templates/index.html my-app/plugins/my_plugin.py my-app/static/my.css Now start Datasette by providing the path to that directory: $ datasette my-app/ Datasette will detect the files in that directory and automatically configure itself using them. It will serve all *.db files that it finds, will load metadata.json if it exists, and will load the templates , plugins and static folders if they are present. The files that can be included in this directory are as follows. All are optional. *.db - SQLite database files that will be served by Datasette metadata.json - Metadata for those databases - metadata.yaml or metadata.yml can be used as well inspect-data.json - the result of running datasette inspect *.db --inspect-file=inspect-data.json from the configuration directory - any database files listed here will be treated as immutable, so they should not be changed while Datasette is running settings.json - settings that would normally be passed using --setting - here they should be stored as a JSON object of key/value pairs templates/ - a directory containing Custom temp… | ["Settings"] | [] |
settings:id2 | settings | id2 | Settings | The following options can be set using --setting name value , or by storing them in the settings.json file for use with Configuration directory mode . | ["Settings"] | [] |
settings:setting-default-page-size | settings | setting-default-page-size | default_page_size | The default number of rows returned by the table page. You can over-ride this on a per-page basis using the ?_size=80 query string parameter, provided you do not specify a value higher than the max_returned_rows setting. You can set this default using --setting like so: datasette mydatabase.db --setting default_page_size 50 | ["Settings", "Settings"] | [] |
settings:setting-sql-time-limit-ms | settings | setting-sql-time-limit-ms | sql_time_limit_ms | By default, queries have a time limit of one second. If a query takes longer than this to run Datasette will terminate the query and return an error. If this time limit is too short for you, you can customize it using the sql_time_limit_ms limit - for example, to increase it to 3.5 seconds: datasette mydatabase.db --setting sql_time_limit_ms 3500 You can optionally set a lower time limit for an individual query using the ?_timelimit=100 query string argument: /my-database/my-table?qSpecies=44&_timelimit=100 This would set the time limit to 100ms for that specific query. This feature is useful if you are working with databases of unknown size and complexity - a query that might make perfect sense for a smaller table could take too long to execute on a table with millions of rows. By setting custom time limits you can execute queries "optimistically" - e.g. give me an exact count of rows matching this query but only if it takes less than 100ms to calculate. | ["Settings", "Settings"] | [] |
settings:setting-max-returned-rows | settings | setting-max-returned-rows | max_returned_rows | Datasette returns a maximum of 1,000 rows of data at a time. If you execute a query that returns more than 1,000 rows, Datasette will return the first 1,000 and include a warning that the result set has been truncated. You can use OFFSET/LIMIT or other methods in your SQL to implement pagination if you need to return more than 1,000 rows. You can increase or decrease this limit like so: datasette mydatabase.db --setting max_returned_rows 2000 | ["Settings", "Settings"] | [] |
settings:setting-allow-facet | settings | setting-allow-facet | allow_facet | Allow users to specify columns they would like to facet on using the ?_facet=COLNAME URL parameter to the table view. This is enabled by default. If disabled, facets will still be displayed if they have been specifically enabled in metadata.json configuration for the table. Here's how to disable this feature: datasette mydatabase.db --setting allow_facet off | ["Settings", "Settings"] | [] |
settings:setting-default-facet-size | settings | setting-default-facet-size | default_facet_size | The default number of unique rows returned by Facets is 30. You can customize it like this: datasette mydatabase.db --setting default_facet_size 50 | ["Settings", "Settings"] | [] |
settings:setting-facet-time-limit-ms | settings | setting-facet-time-limit-ms | facet_time_limit_ms | This is the time limit Datasette allows for calculating a facet, which defaults to 200ms: datasette mydatabase.db --setting facet_time_limit_ms 1000 | ["Settings", "Settings"] | [] |
settings:setting-facet-suggest-time-limit-ms | settings | setting-facet-suggest-time-limit-ms | facet_suggest_time_limit_ms | When Datasette calculates suggested facets it needs to run a SQL query for every column in your table. The default for this time limit is 50ms to account for the fact that it needs to run once for every column. If the time limit is exceeded the column will not be suggested as a facet. You can increase this time limit like so: datasette mydatabase.db --setting facet_suggest_time_limit_ms 500 | ["Settings", "Settings"] | [] |
settings:setting-suggest-facets | settings | setting-suggest-facets | suggest_facets | Should Datasette calculate suggested facets? On by default, turn this off like so: datasette mydatabase.db --setting suggest_facets off | ["Settings", "Settings"] | [] |
settings:setting-allow-download | settings | setting-allow-download | allow_download | Should users be able to download the original SQLite database using a link on the database index page? This is turned on by default. However, databases can only be downloaded if they are served in immutable mode and not in-memory. If downloading is unavailable for either of these reasons, the download link is hidden even if allow_download is on. To disable database downloads, use the following: datasette mydatabase.db --setting allow_download off | ["Settings", "Settings"] | [] |
settings:setting-default-cache-ttl | settings | setting-default-cache-ttl | default_cache_ttl | Default HTTP caching max-age header in seconds, used for Cache-Control: max-age=X . Can be over-ridden on a per-request basis using the ?_ttl= query string parameter. Set this to 0 to disable HTTP caching entirely. Defaults to 5 seconds. datasette mydatabase.db --setting default_cache_ttl 60 | ["Settings", "Settings"] | [] |
settings:setting-allow-csv-stream | settings | setting-allow-csv-stream | allow_csv_stream | Enables the CSV export feature where an entire table (potentially hundreds of thousands of rows) can be exported as a single CSV file. This is turned on by default - you can turn it off like this: datasette mydatabase.db --setting allow_csv_stream off | ["Settings", "Settings"] | [] |
settings:setting-max-csv-mb | settings | setting-max-csv-mb | max_csv_mb | The maximum size of CSV that can be exported, in megabytes. Defaults to 100MB. You can disable the limit entirely by settings this to 0: datasette mydatabase.db --setting max_csv_mb 0 | ["Settings", "Settings"] | [] |
settings:setting-truncate-cells-html | settings | setting-truncate-cells-html | truncate_cells_html | In the HTML table view, truncate any strings that are longer than this value. The full value will still be available in CSV, JSON and on the individual row HTML page. Set this to 0 to disable truncation. datasette mydatabase.db --setting truncate_cells_html 0 | ["Settings", "Settings"] | [] |
settings:setting-force-https-urls | settings | setting-force-https-urls | force_https_urls | Forces self-referential URLs in the JSON output to always use the https:// protocol. This is useful for cases where the application itself is hosted using HTTP but is served to the outside world via a proxy that enables HTTPS. datasette mydatabase.db --setting force_https_urls 1 | ["Settings", "Settings"] | [] |
settings:setting-base-url | settings | setting-base-url | base_url | If you are running Datasette behind a proxy, it may be useful to change the root path used for the Datasette instance. For example, if you are sending traffic from https://www.example.com/tools/datasette/ through to a proxied Datasette instance you may wish Datasette to use /tools/datasette/ as its root URL. You can do that like so: datasette mydatabase.db --setting base_url /tools/datasette/ | ["Settings", "Settings"] | [] |
settings:setting-secret | settings | setting-secret | Configuring the secret | Datasette uses a secret string to sign secure values such as cookies. If you do not provide a secret, Datasette will create one when it starts up. This secret will reset every time the Datasette server restarts though, so things like authentication cookies will not stay valid between restarts. You can pass a secret to Datasette in two ways: with the --secret command-line option or by setting a DATASETTE_SECRET environment variable. $ datasette mydb.db --secret=SECRET_VALUE_HERE Or: $ export DATASETTE_SECRET=SECRET_VALUE_HERE $ datasette mydb.db One way to generate a secure random secret is to use Python like this: $ python3 -c 'import secrets; print(secrets.token_hex(32))' cdb19e94283a20f9d42cca50c5a4871c0aa07392db308755d60a1a5b9bb0fa52 Plugin authors make use of this signing mechanism in their plugins using .sign(value, namespace="default") and .unsign(value, namespace="default") . | ["Settings"] | [] |
settings:setting-publish-secrets | settings | setting-publish-secrets | Using secrets with datasette publish | The datasette publish and datasette package commands both generate a secret for you automatically when Datasette is deployed. This means that every time you deploy a new version of a Datasette project, a new secret will be generated. This will cause signed cookies to become invalid on every fresh deploy. You can fix this by creating a secret that will be used for multiple deploys and passing it using the --secret option: datasette publish cloudrun mydb.db --service=my-service --secret=cdb19e94283a20f9d42cca5 | ["Settings"] | [] |
writing_plugins:writing-plugins-configuration | writing_plugins | writing-plugins-configuration | Writing plugins that accept configuration | When you are writing plugins, you can access plugin configuration like this using the datasette plugin_config() method. If you know you need plugin configuration for a specific table, you can access it like this: plugin_config = datasette.plugin_config( "datasette-cluster-map", database="sf-trees", table="Street_Tree_List" ) This will return the {"latitude_column": "lat", "longitude_column": "lng"} in the above example. If there is no configuration for that plugin, the method will return None . If it cannot find the requested configuration at the table layer, it will fall back to the database layer and then the root layer. For example, a user may have set the plugin configuration option like so: { "databases: { "sf-trees": { "plugins": { "datasette-cluster-map": { "latitude_column": "xlat", "longitude_column": "xlng" } } } } } In this case, the above code would return that configuration for ANY table within the sf-trees database. The plugin configuration could also be set at the top level of metadata.json : { "title": "This is the top-level title in metadata.json", "plugins": { "datasette-cluster-map": { "latitude_column": "xlat", "longitude_column": "xlng" } } } Now that datasette-cluster-map plugin configuration will apply to every table in every database. | ["Writing plugins"] | [] |
writing_plugins:writing-plugins-building-urls | writing_plugins | writing-plugins-building-urls | Building URLs within plugins | Plugins that define their own custom user interface elements may need to link to other pages within Datasette. This can be a bit tricky if the Datasette instance is using the base_url configuration setting to run behind a proxy, since that can cause Datasette's URLs to include an additional prefix. The datasette.urls object provides internal methods for correctly generating URLs to different pages within Datasette, taking any base_url configuration into account. This object is exposed in templates as the urls variable, which can be used like this: Back to the <a href="{{ urls.instance() }}">Homepage</a> See datasette.urls for full details on this object. | ["Writing plugins"] | [] |
full_text_search:full-text-search-fts-versions | full_text_search | full-text-search-fts-versions | FTS versions | There are three different versions of the SQLite FTS module: FTS3, FTS4 and FTS5. You can tell which versions are supported by your instance of Datasette by checking the /-/versions page. FTS5 is the most advanced module but may not be available in the SQLite version that is bundled with your Python installation. Most importantly, FTS5 is the only version that has the ability to order by search relevance without needing extra code. If you can't be sure that FTS5 will be available, you should use FTS4. | ["Full-text search"] | [] |
introspection:id1 | introspection | id1 | Introspection | Datasette includes some pages and JSON API endpoints for introspecting the current instance. These can be used to understand some of the internals of Datasette and to see how a particular instance has been configured. Each of these pages can be viewed in your browser. Add .json to the URL to get back the contents as JSON. | [] | [] |
introspection:jsondataview-actor | introspection | jsondataview-actor | /-/actor | Shows the currently authenticated actor. Useful for debugging Datasette authentication plugins. { "actor": { "id": 1, "username": "some-user" } } | ["Introspection"] | [] |
introspection:messagesdebugview | introspection | messagesdebugview | /-/messages | The debug tool at /-/messages can be used to set flash messages to try out that feature. See .add_message(request, message, type=datasette.INFO) for details of this feature. | ["Introspection"] | [] |
authentication:authentication | authentication | authentication | Authentication and permissions | Datasette does not require authentication by default. Any visitor to a Datasette instance can explore the full data and execute read-only SQL queries. Datasette's plugin system can be used to add many different styles of authentication, such as user accounts, single sign-on or API keys. | [] | [] |
authentication:authentication-actor | authentication | authentication-actor | Actors | Through plugins, Datasette can support both authenticated users (with cookies) and authenticated API agents (via authentication tokens). The word "actor" is used to cover both of these cases. Every request to Datasette has an associated actor value, available in the code as request.actor . This can be None for unauthenticated requests, or a JSON compatible Python dictionary for authenticated users or API agents. The actor dictionary can be any shape - the design of that data structure is left up to the plugins. A useful convention is to include an "id" string, as demonstrated by the "root" actor below. Plugins can use the actor_from_request(datasette, request) hook to implement custom logic for authenticating an actor based on the incoming HTTP request. | ["Authentication and permissions"] | [] |
authentication:authentication-permissions-metadata | authentication | authentication-permissions-metadata | Configuring permissions in metadata.json | You can limit who is allowed to view different parts of your Datasette instance using "allow" keys in your Metadata configuration. You can control the following: Access to the entire Datasette instance Access to specific databases Access to specific tables and views Access to specific Canned queries If a user cannot access a specific database, they will not be able to access tables, views or queries within that database. If a user cannot access the instance they will not be able to access any of the databases, tables, views or queries. | ["Authentication and permissions"] | [] |
authentication:authentication-permissions-database | authentication | authentication-permissions-database | Controlling access to specific databases | To limit access to a specific private.db database to just authenticated users, use the "allow" block like this: { "databases": { "private": { "allow": { "id": "*" } } } } | ["Authentication and permissions", "Configuring permissions in metadata.json"] | [] |
authentication:authentication-permissions-query | authentication | authentication-permissions-query | Controlling access to specific canned queries | Canned queries allow you to configure named SQL queries in your metadata.json that can be executed by users. These queries can be set up to both read and write to the database, so controlling who can execute them can be important. To limit access to the add_name canned query in your dogs.db database to just the root user : { "databases": { "dogs": { "queries": { "add_name": { "sql": "INSERT INTO names (name) VALUES (:name)", "write": true, "allow": { "id": ["root"] } } } } } } | ["Authentication and permissions", "Configuring permissions in metadata.json"] | [] |
authentication:permissions-plugins | authentication | permissions-plugins | Checking permissions in plugins | Datasette plugins can check if an actor has permission to perform an action using the datasette.permission_allowed(...) method. Datasette core performs a number of permission checks, documented below . Plugins can implement the permission_allowed(datasette, actor, action, resource) plugin hook to participate in decisions about whether an actor should be able to perform a specified action. | ["Authentication and permissions"] | [] |
authentication:authentication-actor-matches-allow | authentication | authentication-actor-matches-allow | actor_matches_allow() | Plugins that wish to implement this same "allow" block permissions scheme can take advantage of the datasette.utils.actor_matches_allow(actor, allow) function: from datasette.utils import actor_matches_allow actor_matches_allow({"id": "root"}, {"id": "*"}) # returns True The currently authenticated actor is made available to plugins as request.actor . | ["Authentication and permissions"] | [] |
authentication:permissionsdebugview | authentication | permissionsdebugview | The permissions debug tool | The debug tool at /-/permissions is only available to the authenticated root user (or any actor granted the permissions-debug action according to a plugin). It shows the thirty most recent permission checks that have been carried out by the Datasette instance. This is designed to help administrators and plugin authors understand exactly how permission checks are being carried out, in order to effectively configure Datasette's permission system. | ["Authentication and permissions"] | [] |
authentication:authentication-ds-actor | authentication | authentication-ds-actor | The ds_actor cookie | Datasette includes a default authentication plugin which looks for a signed ds_actor cookie containing a JSON actor dictionary. This is how the root actor mechanism works. Authentication plugins can set signed ds_actor cookies themselves like so: response = Response.redirect("/") response.set_cookie( "ds_actor", datasette.sign({"a": {"id": "cleopaws"}}, "actor"), ) Note that you need to pass "actor" as the namespace to .sign(value, namespace="default") . The shape of data encoded in the cookie is as follows: { "a": {... actor ...} } | ["Authentication and permissions"] | [] |
authentication:authentication-ds-actor-expiry | authentication | authentication-ds-actor-expiry | Including an expiry time | ds_actor cookies can optionally include a signed expiry timestamp, after which the cookies will no longer be valid. Authentication plugins may chose to use this mechanism to limit the lifetime of the cookie. For example, if a plugin implements single-sign-on against another source it may decide to set short-lived cookies so that if the user is removed from the SSO system their existing Datasette cookies will stop working shortly afterwards. To include an expiry, add a "e" key to the cookie value containing a base62-encoded integer representing the timestamp when the cookie should expire. For example, here's how to set a cookie that expires after 24 hours: import time from datasette.utils import baseconv expires_at = int(time.time()) + (24 * 60 * 60) response = Response.redirect("/") response.set_cookie( "ds_actor", datasette.sign( { "a": {"id": "cleopaws"}, "e": baseconv.base62.encode(expires_at), }, "actor", ), ) The resulting cookie will encode data that looks something like this: { "a": { "id": "cleopaws" }, "e": "1jjSji" } | ["Authentication and permissions", "The ds_actor cookie"] | [] |
authentication:logoutview | authentication | logoutview | The /-/logout page | The page at /-/logout provides the ability to log out of a ds_actor cookie authentication session. | ["Authentication and permissions", "The ds_actor cookie"] | [] |
authentication:id1 | authentication | id1 | Built-in permissions | This section lists all of the permission checks that are carried out by Datasette core, along with the resource if it was passed. | ["Authentication and permissions"] | [] |
authentication:permissions-permissions-debug | authentication | permissions-permissions-debug | permissions-debug | Actor is allowed to view the /-/permissions debug page. Default deny . | ["Authentication and permissions", "Built-in permissions"] | [] |
authentication:permissions-debug-menu | authentication | permissions-debug-menu | debug-menu | Controls if the various debug pages are displayed in the navigation menu. Default deny . | ["Authentication and permissions", "Built-in permissions"] | [] |
json_api:id1 | json_api | id1 | JSON API | Datasette provides a JSON API for your SQLite databases. Anything you can do through the Datasette user interface can also be accessed as JSON via the API. To access the API for a page, either click on the .json link on that page or edit the URL and add a .json extension to it. If you started Datasette with the --cors option, each JSON endpoint will be served with the following additional HTTP headers: Access-Control-Allow-Origin: * Access-Control-Allow-Headers: Authorization Access-Control-Expose-Headers: Link This means JavaScript running on any domain will be able to make cross-origin requests to fetch the data. If you start Datasette without the --cors option only JavaScript running on the same domain as Datasette will be able to access the API. | [] | [] |
json_api:json-api-shapes | json_api | json-api-shapes | Different shapes | The default JSON representation of data from a SQLite table or custom query looks like this: { "database": "sf-trees", "table": "qSpecies", "columns": [ "id", "value" ], "rows": [ [ 1, "Myoporum laetum :: Myoporum" ], [ 2, "Metrosideros excelsa :: New Zealand Xmas Tree" ], [ 3, "Pinus radiata :: Monterey Pine" ] ], "truncated": false, "next": "100", "next_url": "http://127.0.0.1:8001/sf-trees-02c8ef1/qSpecies.json?_next=100", "query_ms": 1.9571781158447266 } The columns key lists the columns that are being returned, and the rows key then returns a list of lists, each one representing a row. The order of the values in each row corresponds to the columns. The _shape parameter can be used to access alternative formats for the rows key which may be more convenient for your application. There are three options: ?_shape=arrays - "rows" is the default option, shown above ?_shape=objects - "rows" is a list of JSON key/value objects ?_shape=array - an JSON array of objects ?_shape=array&_nl=on - a newline-separated list of JSON objects ?_shape=arrayfirst - a flat JSON array containing just the first value from each row ?_shape=object - a JSON object keyed using the primary keys of the rows _shape=objects looks like this: { "database": "sf-trees", ... "rows": [ { "id": 1, … | ["JSON API"] | [] |
json_api:id2 | json_api | id2 | Table arguments | The Datasette table view takes a number of special query string arguments. | ["JSON API"] | [] |
json_api:column-filter-arguments | json_api | column-filter-arguments | Column filter arguments | You can filter the data returned by the table based on column values using a query string argument. ?column__exact=value or ?_column=value Returns rows where the specified column exactly matches the value. ?column__not=value Returns rows where the column does not match the value. ?column__contains=value Rows where the string column contains the specified value ( column like "%value%" in SQL). ?column__endswith=value Rows where the string column ends with the specified value ( column like "%value" in SQL). ?column__startswith=value Rows where the string column starts with the specified value ( column like "value%" in SQL). ?column__gt=value Rows which are greater than the specified value. ?column__gte=value Rows which are greater than or equal to the specified value. ?column__lt=value Rows which are less than the specified value. … | ["JSON API", "Table arguments"] | [] |
json_api:expand-foreign-keys | json_api | expand-foreign-keys | Expanding foreign key references | Datasette can detect foreign key relationships and resolve those references into labels. The HTML interface does this by default for every detected foreign key column - you can turn that off using ?_labels=off . You can request foreign keys be expanded in JSON using the _labels=on or _label=COLUMN special query string parameters. Here's what an expanded row looks like: [ { "rowid": 1, "TreeID": 141565, "qLegalStatus": { "value": 1, "label": "Permitted Site" }, "qSpecies": { "value": 1, "label": "Myoporum laetum :: Myoporum" }, "qAddress": "501X Baker St", "SiteOrder": 1 } ] The column in the foreign key table that is used for the label can be specified in metadata.json - see Specifying the label column for a table . | ["JSON API"] | [] |
json_api:json-api-discover-alternate | json_api | json-api-discover-alternate | Discovering the JSON for a page | Most of the HTML pages served by Datasette provide a mechanism for discovering their JSON equivalents using the HTML link mechanism. You can find this near the top of the source code of those pages, looking like this: <link rel="alternate" type="application/json+datasette" href="https://latest.datasette.io/fixtures/sortable.json"> The JSON URL is also made available in a Link HTTP header for the page: Link: https://latest.datasette.io/fixtures/sortable.json; rel="alternate"; type="application/json+datasette" | ["JSON API"] | [] |
internals:internals | internals | internals | Internals for plugins | Many Plugin hooks are passed objects that provide access to internal Datasette functionality. The interface to these objects should not be considered stable with the exception of methods that are documented here. | [] | [] |
internals:internals-multiparams | internals | internals-multiparams | The MultiParams class | request.args is a MultiParams object - a dictionary-like object which provides access to query string parameters that may have multiple values. Consider the query string ?foo=1&foo=2&bar=3 - with two values for foo and one value for bar . request.args[key] - string Returns the first value for that key, or raises a KeyError if the key is missing. For the above example request.args["foo"] would return "1" . request.args.get(key) - string or None Returns the first value for that key, or None if the key is missing. Pass a second argument to specify a different default, e.g. q = request.args.get("q", "") . request.args.getlist(key) - list of strings Returns the list of strings for that key. request.args.getlist("foo") would return ["1", "2"] in the above example. request.args.getlist("bar") would return ["3"] . If the key is missing an empty list will be returned. request.args.keys() - list of strings Returns the list of available keys - for the example this would be ["foo", "bar"] . key in request.args - True or False You can use if key in request.args to check if a key is present. for key in request.args - iterator This lets you loop through every available key. le… | ["Internals for plugins"] | [] |
internals:internals-response | internals | internals-response | Response class | The Response class can be returned from view functions that have been registered using the register_routes(datasette) hook. The Response() constructor takes the following arguments: body - string The body of the response. status - integer (optional) The HTTP status - defaults to 200. headers - dictionary (optional) A dictionary of extra HTTP headers, e.g. {"x-hello": "world"} . content_type - string (optional) The content-type for the response. Defaults to text/plain . For example: from datasette.utils.asgi import Response response = Response( "<xml>This is XML</xml>", content_type="application/xml; charset=utf-8", ) The quickest way to create responses is using the Response.text(...) , Response.html(...) , Response.json(...) or Response.redirect(...) helper methods: from datasette.utils.asgi import Response html_response = Response.html("This is HTML") json_response = Response.json({"this_is": "json"}) text_response = Response.text( "This will become utf-8 encoded text" ) # Redirects are served as 302, unless you pass status=301: redirect_response = Response.redirect( "https://latest.datasette.io/" ) Each of these responses will use the correct corresponding content-type - text/html; charset=utf-8 , application/json; charset=utf-8 or text/plain; charset=utf-8 respectively. Each of the helper methods take optional status= and headers= argument… | ["Internals for plugins"] | [] |
internals:internals-response-asgi-send | internals | internals-response-asgi-send | Returning a response with .asgi_send(send) | In most cases you will return Response objects from your own view functions. You can also use a Response instance to respond at a lower level via ASGI, for example if you are writing code that uses the asgi_wrapper(datasette) hook. Create a Response object and then use await response.asgi_send(send) , passing the ASGI send function. For example: async def require_authorization(scope, receive, send): response = Response.text( "401 Authorization Required", headers={ "www-authenticate": 'Basic realm="Datasette", charset="UTF-8"' }, status=401, ) await response.asgi_send(send) | ["Internals for plugins", "Response class"] | [] |
internals:internals-response-set-cookie | internals | internals-response-set-cookie | Setting cookies with response.set_cookie() | To set cookies on the response, use the response.set_cookie(...) method. The method signature looks like this: def set_cookie( self, key, value="", max_age=None, expires=None, path="/", domain=None, secure=False, httponly=False, samesite="lax", ): ... You can use this with datasette.sign() to set signed cookies. Here's how you would set the ds_actor cookie for use with Datasette authentication : response = Response.redirect("/") response.set_cookie( "ds_actor", datasette.sign({"a": {"id": "cleopaws"}}, "actor"), ) return response | ["Internals for plugins", "Response class"] | [] |
internals:internals-datasette | internals | internals-datasette | Datasette class | This object is an instance of the Datasette class, passed to many plugin hooks as an argument called datasette . You can create your own instance of this - for example to help write tests for a plugin - like so: from datasette.app import Datasette # With no arguments a single in-memory database will be attached datasette = Datasette() # The files= argument can load files from disk datasette = Datasette(files=["/path/to/my-database.db"]) # Pass metadata as a JSON dictionary like this datasette = Datasette( files=["/path/to/my-database.db"], metadata={ "databases": { "my-database": { "description": "This is my database" } } }, ) Constructor parameters include: files=[...] - a list of database files to open immutables=[...] - a list of database files to open in immutable mode metadata={...} - a dictionary of Metadata | ["Internals for plugins"] | [] |
internals:datasette-databases | internals | datasette-databases | .databases | Property exposing a collections.OrderedDict of databases currently connected to Datasette. The dictionary keys are the name of the database that is used in the URL - e.g. /fixtures would have a key of "fixtures" . The values are Database class instances. All databases are listed, irrespective of user permissions. This means that the _internal database will always be listed here. | ["Internals for plugins", "Datasette class"] | [] |
internals:datasette-plugin-config | internals | datasette-plugin-config | .plugin_config(plugin_name, database=None, table=None) | plugin_name - string The name of the plugin to look up configuration for. Usually this is something similar to datasette-cluster-map . database - None or string The database the user is interacting with. table - None or string The table the user is interacting with. This method lets you read plugin configuration values that were set in metadata.json . See Writing plugins that accept configuration for full details of how this method should be used. The return value will be the value from the configuration file - usually a dictionary. If the plugin is not configured the return value will be None . | ["Internals for plugins", "Datasette class"] | [] |
internals:datasette-permission-allowed | internals | datasette-permission-allowed | await .permission_allowed(actor, action, resource=None, default=False) | actor - dictionary The authenticated actor. This is usually request.actor . action - string The name of the action that is being permission checked. resource - string or tuple, optional The resource, e.g. the name of the database, or a tuple of two strings containing the name of the database and the name of the table. Only some permissions apply to a resource. default - optional, True or False Should this permission check be default allow or default deny. Check if the given actor has permission to perform the given action on the given resource. Some permission checks are carried out against rules defined in metadata.json , while other custom permissions may be decided by plugins that implement the permission_allowed(datasette, actor, action, resource) plugin hook. If neither metadata.json nor any of the plugins provide an answer to the permission query the default argument will be returned. See Built-in permissions for a full list of permission actions included in Datasette core. | ["Internals for plugins", "Datasette class"] | [] |
internals:datasette-ensure-permissions | internals | datasette-ensure-permissions | await .ensure_permissions(actor, permissions) | actor - dictionary The authenticated actor. This is usually request.actor . permissions - list A list of permissions to check. Each permission in that list can be a string action name or a 2-tuple of (action, resource) . This method allows multiple permissions to be checked at onced. It raises a datasette.Forbidden exception if any of the checks are denied before one of them is explicitly granted. This is useful when you need to check multiple permissions at once. For example, an actor should be able to view a table if either one of the following checks returns True or not a single one of them returns False : await self.ds.ensure_permissions( request.actor, [ ("view-table", (database, table)), ("view-database", database), "view-instance", ], ) | ["Internals for plugins", "Datasette class"] | [] |
internals:datasette-check-visibilty | internals | datasette-check-visibilty | await .check_visibility(actor, action, resource=None) | actor - dictionary The authenticated actor. This is usually request.actor . action - string The name of the action that is being permission checked. resource - string or tuple, optional The resource, e.g. the name of the database, or a tuple of two strings containing the name of the database and the name of the table. Only some permissions apply to a resource. This convenience method can be used to answer the question "should this item be considered private, in that it is visible to me but it is not visible to anonymous users?" It returns a tuple of two booleans, (visible, private) . visible indicates if the actor can see this resource. private will be True if an anonymous user would not be able to view the resource. This example checks if the user can access a specific table, and sets private so that a padlock icon can later be displayed: visible, private = await self.ds.check_visibility( request.actor, "view-table", (database, table) ) | ["Internals for plugins", "Datasette class"] | [] |
internals:datasette-get-database | internals | datasette-get-database | .get_database(name) | name - string, optional The name of the database - optional. Returns the specified database object. Raises a KeyError if the database does not exist. Call this method without an argument to return the first connected database. | ["Internals for plugins", "Datasette class"] | [] |
internals:datasette-add-database | internals | datasette-add-database | .add_database(db, name=None, route=None) | db - datasette.database.Database instance The database to be attached. name - string, optional The name to be used for this database . If not specified Datasette will pick one based on the filename or memory name. route - string, optional This will be used in the URL path. If not specified, it will default to the same thing as the name . The datasette.add_database(db) method lets you add a new database to the current Datasette instance. The db parameter should be an instance of the datasette.database.Database class. For example: from datasette.database import Database datasette.add_database( Database( datasette, path="path/to/my-new-database.db", is_mutable=True, ) ) This will add a mutable database and serve it at /my-new-database . .add_database() returns the Database instance, with its name set as the database.name attribute. Any time you are working with a newly added database you should use the return value of .add_database() , for example: db = datasette.add_database( Database(datasette, memory_name="statistics") ) await db.execute_write( "CREATE TABLE foo(id integer primary key)" ) | ["Internals for plugins", "Datasette class"] | [] |
internals:datasette-add-memory-database | internals | datasette-add-memory-database | .add_memory_database(name) | Adds a shared in-memory database with the specified name: datasette.add_memory_database("statistics") This is a shortcut for the following: from datasette.database import Database datasette.add_database( Database(datasette, memory_name="statistics") ) Using either of these pattern will result in the in-memory database being served at /statistics . | ["Internals for plugins", "Datasette class"] | [] |
internals:datasette-remove-database | internals | datasette-remove-database | .remove_database(name) | name - string The name of the database to be removed. This removes a database that has been previously added. name= is the unique name of that database. | ["Internals for plugins", "Datasette class"] | [] |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [sections] ( [id] TEXT PRIMARY KEY, [page] TEXT, [ref] TEXT, [title] TEXT, [content] TEXT, [breadcrumbs] TEXT, [references] TEXT );